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ABSTRACT

This paper reviews pixel-based and region-based
(*structura1~) image models. The former include both
one—dimensional time series and random field models, with
the properties of the field specified either locally or
globally.
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1. Types of Models

• Traditionally, image models have been classified as

statistical or structural [22,48,54]. The statistical models

involve desription of image statistics such as autocorrela-

tion etc., while the structural approach consists of speci-

fication of structural primitives and placement rules for

laying these primitives out in the plane. It should be noted

that if the rules in the structural approach are not statisti-

cal, the resulting models should be too regular to be interest-

ing. Thus the structural models too must in part be statisti-

cal. A better classification of image models might be as

follows:

a) Pixel based models: These models view individual

pixels as the primitives of the texture. Specification

of the characteristics of the spatial distribution of

pixel properties [22,42] constitutes the texture

description.

b) Region based models: These models conceive of a texture

• as an arrangement of a set of spatial (sub)patterns

according to certain placement rules [54]. Both the

subpatterns and their placement may be statistically

characterized . The subpatterns may further be made up

of smaller patterns.
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• In the following sections we will discuss these two

classes of models and review many of the studies of image

modeling conducted through 1978. It should be emphasized

that image modeling is a rapidly evolving field and much

further work is currently in progress.
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~ 2. Pixel Based Models

Pixel based models can be further divided into two classes:

2.1. One-Dimensional Time Series Models

Time series analysis [101 has been extensively used [38,

60,61] to study visual textures. The image is TV scanned to

- provide a one-dimensional series of gray level fluctuations ,

4 which is treated as a one—dimensional stochastic process

evolving in “time ” . The fu tu re  course of the process is pre-

sumed to be predictable by knowing enough about its past.

Before summarizing the models , we review some of the

commonly used notation in time series.

Let

z t_ l z t z t+i

be a discrete time series where is the value of the random

variable Z at time i. We denote the series by EZ].

- Let ~z be the mean of [Z], called the “level” of the pro—

cess.

Let (Z] denote the series of deviations about u, i.e.,

= Z~~-I.i

Let [a) be a series of outputs of a white noise source ,

E with mean zero and variance u~~.

Let B be the “backward” shift operator such that

hence
• m~~B =

I- ,- 
- -  . - — • - -
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and let 2 be the “backwa rd” d i f ference operator such that

= Z t
_ Z t_ l  = ( l — B ) Z

~~
;

hence 2 m~ = (1_B) mZ~

The dependence of the current value ~~. of the random variable

2 on the past values of ~ and a is expressed in d i f f e r -

exit ways, and this gives rise to several different modelE [381.

;~ (a) Autoregressive Model (AR):

In this model the current Z-value depends on the pre-

vious p 1—values , and on the current noise term:

= 
~l
zt_i + •21t~ 2~~~ ~~~~~~~ 

+ a~ ( 1)

If we let

= l—4 1B—c~2
B2-.

then (1) becomes

[~~~(B ) 1 
~~~ 

= a
~

as defined above , is kncwn as the autoregressive

process of ordur p, and ~~ (B) as the autoregressive operator

of order p . The name “ autoregressive” com es from the model’ s

similarity to regression analysis , and the fact that the vari-

able Z is being regressed on previous values of i t s e l f .

(b ) ~1oving Average Model (MA) :

In (a) above, can be eliminated from the ex-

pression for Z~ by substituting

1
t—i 

= 

~l~ t-2 
+ 

~2 
1t—3 ~~~~

• •  ~
+ ~p Z t_ p_ l  + a

~~ i

~~~ 
- - - - — - — “ L ~~ -~~~~~~
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- This process can be repeated to yield eventually an expression

for as an infinite series in the a ’s.

• The moving average model allows a finite n umber q of

• previous a—values in the expression for Z~~. This explicitly

treats the series as being observations on linearly filtered

• Gaussian noise.

Letting

9q(B) = l-91B-e2B 2- .. .~~ e~B~~

we have

= (e q ( B ) l ( a t )

as the moving average process of order q.

( C)  Mixed Model (ARNA) :

To achieve greater flexibility in fitting of actual

4 time series , this model includes both the autoregressive and

I the moving average terms . Thus

= 

~l~ t—l ~~ ~~~~ ~~ ~p
1t—p + a

~
—81a~~ i

_e
2a~ _ 2

_ . ~~~~~~~~~

i.e., [4~~(B)] (Zt) = (8q (B)] (at) (2)

• In all the three models just mentioned , the process

generating the series is assumed to be in equilibrium about a

constant mean level. Such models are called stationary models.

There is another class of models called non-

• stationary models, in which the level ~i does not remain con-

stant. The series involved may , nevertheless , exhibit homogeneous

behavior when the differences due to level-drift are accounted

i__ i 
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for. It can been shown [101 that such a behavior may be repre-

sented by a generalized autoregressive operator .

A time series may show a repetitive pattern of periods

of similar characteristics. For example , in the TV scan of

an image the intervals corresponding to rows will have similar

characteristics. A generalized model that incorporates the

presence of such “seasonal effects” in the time series can

also be obtained [38].

All of the time series models discussed above are uni-

lateral, i.e., a pixel depends only upon the pixels that pre-

cede it in a TV scan. Any introduction of bilateral dependence

gives rise to more complex parameter estimation problems, even

though both conditional representations are known to be essen-

tially identical [9,121. It may be of interest to note that

a frequency domain treatment makes parameter estimation

in bilateral representation much easier [13].
I
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2.2. Random Field Models

These models treat the image as a two—dimensional random

field [53,64]. The models make use of the properties of the

grid that defines the pixel locations. We will consider two

subclasses of these models.

2.2.1. Global Models

Global models attempt a description of the field by speci-

fying a process that can be used to obtain a realization of

the set of gray level values at various pixels, or by speci-

fying particular properties of the field .

An important model has been used by oceanographers [31-33 ,

49) interested in the patterns formed by waves on the ocean

surface. Longuet-Higgins [31—33] treats the ocean surface as

a random field satisfying the following assumptions :

(a) the wave spectrum contains a single narrow band of

frequencies, and

(b) the wave energy is being received from a large number

of different sources whose phases are random .

Considering such a random field, he obtains [32] the

statistical distr ibut ion of wave heights , and derives rela—

tions between the root mean square wave height, the mean height

of the highest p% of the waves, and the most likely height of

the largest wave in a given interval of time.

In subsequent papers [31 ,32], Longuet-Higgins obtains an

additional set of statistical relations among the parameters 
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describing (a) a random moving Gaussian surface [31] , and (b)

a Gaussian isotropic surface ( 3 2 ] .

Some of the results that he derives are:

(1) the probability distribution of the surface elevation ,

and that of the magnitude and orientation of the

gradient,

(2 )  the average number of zero crossings per unit  distance

along a line in an arbitrary direction ,

(3) the average length of contour per unit area ,

(4) the average density of maxima and minima per unit

area, and

(5) for a narrow spectrum , the probability distribution

of the heights of maxima and minima.

All the results are expressed in- terms of the two—

dimensional energy spectrum up to a finite order only . The

converse of the problem is also studied and solved , i.e.,

given certain statistical properties of the surface , to find

a convergent sequence of approximations to the energy spectrum .

The analogy between this work and image processing , and

the significance of the results obtained therein , is obvious.

Fortunately the assumptions made are also acceptable for images .

Schachter [57] suggests a version of the above model for

the case of a narrow band spectrum. Panda [47] uses an ana-

logous approach to analyze background regions selected from

t 
Forward Looking InfraRed (FLIR) imagery . He derives expressions
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for (a) density of border points and (b) average number of

connected compcnents in a row of the thresholded picture .

There is good agreement between the observed and the predicted

values in most cases, for most of the pictures considered .

Panda [46] also uses the same model to predict the properties

of the pictures obtained by running several edge operators

(based on differences of average gray levels) on some synthetic

pictures with normally distributed gray levels, and having

different correlation coefficients . The images are assumed

to be continuous-valued stationary Gaussian random fields

with continuous parameters.

Nahi and Jahanshashi [431 suggest modelling the

image as a background statistical process combined with a set

of foreground statistical processes , each replacing the back-

ground in the regions occupied by the objects of the category

which it is assumed to characterize. In estimating the boun-

daries of horizontally convex objects on a background in

noisy binary pictures , Nahi and Jahanshahi assume that

the two kinds of regions in the picture are formed by two

statistically independent stationary random processes with

known (estimated) first two moments. However , the borders
• 

o1 the regions covered by the different statistical processes

are modelled locally. Specifically, the end-points of the

intercepts of the given object on successive rows are assumed

to form a first order Markov process . This model thus also

involves local interactions.

~•2 —_- — ~~~~~ _t_. t~ —



• Thus, using the notation

b(m ,n) = gray level at the nth column of the mth row

y (m,n) = a binary function carrying the boundary information

bb = a sample gray level from the background process,

b0 = a sample gray level from the object process , and

v = a sample gray level from the noise process ,

the model allows us to write

b(m,n) = Y (m,n) b0(m ,n) + [l-y(m ,n)] bb (m ,n) + v(m ,n)

where I incorporates the Markov constraints on the object

boundaries.

In a subsequent paper Nahi and Lopez—Mora [44] use a more

complex y furicti~~i. For each row , ‘r e i the r :ndicates the ab~ e~ ce

of the object or provides a vector estimate of the object wid th

and its geometric center in that row . The two-dimensional

vector possesses information about the object size and skewness ,

and is assumed to be a first—order Markov process.

Pratt and Faugeras [50] and Gagalowicz [171 view texture

as the output of a homogeneous spatial filter excited by white

noise, not necessarily Gaussian . The image is then characterized

by its mean, the histogram of the input white noise, and the

transfer function of the filter . For a given texture, the model

parameters are obtained as follows:

- The mean is readily estimated from the image.

- Computing the autocorrelation function (second—order

moments) determines the magnitude of the transfer function.

-4
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- Computing higher-order moments determines the phase of

the transfer function.

• Inverse filtering gives the white noise image and hence its

• histogram and probability density . For example , for a Markov

- 

• 

field of order 1 it may be sufficient to replace the decorrela-

tion operator by a Laplacian, or by gradient operators [50].

However, the whitened field estimate of the independent iden-

tically distributed noise process obtained above will identify

only the spatial operator in terms of the autocorrelation func-

tion, which is not unique. Thus the white noise probability

density and the spatial filter do not, in general, make up a

complete set of descriptors [511. But it may be possible that

they are sufficient descriptors from the standpoint of visual

texture.

Several authors have proposed models for random surfaces

or random height fields [2,16,35]. In a discussion on surface

patterns in geography Freiberger and Grenander [16] argue that

the earth height field is usually too irregular to be described

by an analytic function of the coordinates with a small number j
of free parameters. However the irregularity cannot be expressed

by pure randomness either since it is characterized by

strong continuity properties. He therefore suggests the use

of stochastic processes derived from physical principles.

Mandelbrot [35] and Adler [2] discuss a Brownian surface model.
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The represen tations of signals in one-dimensional signal

processing that yield recursive solutions motivate the use of

differential (difference ) equations in two dimensions [29].

Jaim. [29] represents images by random fields of one of three

differen t kinds, characterized by the three different classes

of par t ia l  d i f f e ren t i a l  equations , describing a digital  shape

by an appropriate finite difference approximation of a partial

differential equation (PDE). The class of hyperbolic PDE ’s

is shown to provide more general causal models than autore-

gressive moving average models . For a given spectral density

function (or covariance function), parabolic PDE ’s can provide

causal, semicausal, and even noncausal representations . Finally,

elliptic PDE ’s provide noncausal models that represent two-

dimensional discrete Markov fields. They can be used to re-

present both isotropic and nonisotropic images.

Jam [29] argues that the well established theory of PDE ’s

and their numerical solutions and the availability of many

computer algorithms make PDE representation useful. This

representation also obviates the need for spectral factoriza-

tion which removes the restriction of separate covariance func-

tions. System identification techniques may be considered for

choosing a PDE model for a given class of images.

Angel and Jam [8] use the diffusion equation to model

the spread of values around any given point. Thus a given

image is viewed as a blurred version of some original image.
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In the absence of any knowledge or assumption about the

global process underlying a given image, one may attempt to

describe the joint probability density of the properties (say,

gray level) of the pixels, although this may be an overspeci-

fication, i.e., the modeling may not represent enough abstrac-

tion. It also implies estimation of the spatial probability

density functions of gray levels, which means inference on

the joint probability density of a large number of random

variables corresponding to the pixels in the entire image.

To make the problem a little simpler , attempts have been made

to use parametric models where the form of the probability

density is assumed , or to model the field density by specify-

ing some “important” properties of the field that may correspond

to more than one probability density function.

Among parametric models of the joint density of pixels in

a window , the multivariate normal has been the one most common-

ly used because of its tractability . However , it has been

found to have limited applicability . For binary patterns ,

Abend et al. [1) discuss an iterative procedure to obtain an

approximate estimate of the joint probability density function

of the properties of pixels having a multivariate normal

4 
distribution, in terms of lower order marginals of this dis—

tribution. They argue that the multivariate normal approach

is very limiting and that it requires special development when

the sample covariance matrices are singular. Furthermore,

_____  
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the lower order marginals themselves have to be estimated

based on samples which , in practice , are usually not numerous.

• Hunt [25 ,26] also points out that stationary, Gaussian

modeling of images is an oversimplification . Consider the

vector F of the picture points obtained by concatenating them

as in a TV scan. Let RF be the covariance matrix of the gra’;

levels in F. Then according to the Gaussian assumption , the

probability density function of F is

P(F) = K exp [-

where ~ = constant mean vector

= covariance matrix

and K = normalizing constant

The stationarity assumption makes ~ a vector of identical

componen ts. This means that each point in the image has the

same ensemble statistics. Images , however , seldom have a

bell-shaped histogram.

A Gaussian model for any set of multivariate data , how-

ever , is the only model that is mathematically tractable to

any reasonable extent. Hunt [251 proposes a nonstationary

Gaussian model which di f f e r s  from the stationary model only

in that the mean vector ~ has unequal components. He shows

the appropriateness of this model by subtracting , from each

point on the image , its local ensemble average , and showing

that the resulting picture fits a stationary Gaussian model.

• — — --_ _ _ _ _ _ _ _ _ _ _
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Trussel and Kruger [62] show that the Laplacian density

function constitutes a more valid model for high—pass  f i l t e r e d

imagery than the Gaussian model. They show that this discrepancy

neither seriously weakens the applicability of this class of

models to a major restoration method , nor challenges any other

• conclusions of the work based on the Gaussian model .

Matheron [37] uses the change in pixel properties as a

function of distance to model a random field. He uses the

term ”regiorialized variab1e~
’ to emphasize the particular features

of the pixels whose complex mutual correlation reflects the

structure of the underlying phenomenon . He assumes weak s~~at-

ionarity of the increments in the gray levels between p ixe l s .

The second moment of the increments fo r  pixels at an a r b i t r a ru

distance , called the variogram, is used to ref lect  the s t ructure

• of the field. Knowledge of the variogram is useful for the

estimates of many global and local properties of the f i e l d .

Huijbregt s [24]  discusses several properties of the variogram

and relates them to the structural features of the regionalized

variables.  For nonhomogeneous f ie lds  having spatial ly varyin~
- - mean , the variogram of the residuals wi th  respect to the local

means is used.

A characterization similar to the variogram is given by the

• autocorrelation function . In work on image restorat ion, images

• have often been modelled by a two-dimensional random field w i t h

t. 

_ _ _ _  
_ _ _  
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a given mean and autocorrelation. The following general

expression has been suggested for the autocorrelation function:

R(T1, 12) = ~
2. p~~1IT 1~~IT 1H

which is stationary and separable. Specifically, the expo-

nential autocorrelation function (p=e) has been found to be

reasonably good for a variety of pict&~ial data (15,18,23 ,

- •  27,30].

Another autocorrelation model often cited as being more

realistic is 
-

iT 2 + T 2
R(T1, 12) = p 1 2

which is isotropic, rotation invariant and not separable.

________  - -
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2.2.2. Local Models

A s implif icat ion that could be introduced to reduce the

problems involved in the joint probability specification for

the entire image, as is necessary for the global models, is

to assume that not all points in an image are simultaneously

constrained by a high-dimensional probability density func-

tion, but that this is only true of small neighborhoods of

pixels. However , even for a neighborhood of size 3x3 (or 5x5)

and nonparametric representation one has to deal with den-

sities in a 9 (or 25) dimensional space, along with the

associated sample size and storage problems . This makes the

approach unwieldy.

Read and Jayaramamurthy (52] and McCormick and Jayaramanurthy

[39] make use of switching theory techniques to identify textures

by describing their local gray level patterns using minima l

functions . If each p ixel can take one out of Ng grey levels

then a given neighborhood of n pixels from an image can be

represented by a point in an flXNg dimensional space . If many

such neighborhoods from a given texture are considered then

they are likely to provide a cluster of points in the above

space. The differences in the local characteristics of different

• textures are expected to result in different clusters. The set

covering theory of Michalskj and McCormick [40], which is a

generalization of the minimization machinery of switching

• theory already available, is used (39,52] ~~ describe the sets

of points in each cluster. These maximal descriptions also

L ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ •• • •• 
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allow coverage of empty spaces within and around clusters , and

thus the samples do not have to be exhaustive but only have to

be large enough to provide a good representation of the under-

lying texture .

Haralick et al. [20] confine the local descriptions to 2xl

neighborhoods . They identify a texture by the gray-level cooc-

currence frequencies at neighboring pixels , which are the first

estimates of the corresponding probabilities. They use several

different features, all derived from the co—occurrence matrix ,

for texture class if ication.

Most of the local models, however , use conditional pro-

perties of pixels within a window, instead of their joint

probability distributions as in the local models discussed

above. We will now discuss these Markov models that make

a pixel depend upon its neighbors.

T ime series analysis for the one—dimensional models dis-

cussed earlier can also be used to capture part of the two-

dimensional dependence , without getting into the ana lytical

problems arising from a bilateral representation . Tou et al.

[60] have done this by making a point depend on the points in 
•

the quadrant above it and to its left. For such a case, the

autoregressive process of order (q,p) is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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L
= 

~0l 
Zj,~~~1 + 

~~ ~i~ i,j + 
~1l 

Zj_1,~~_1 ~~~~~ ~qp 
Zj_q,j_p ;

the moving average process of order (q,p) is

Z.. = a.. - 9 a . . - 9 a. . - 9 a. . - ...- 9 a .
01 i,j—l 10 i—l ,j 11 i—l ,j—l ap i—c ,j—p ’

and the two—dimensional mixed autoregressive/moving average

process is

Zj
~ 

= 0l ~i,j~~l 
÷ 

~1Q ~i~ l,j 
+ 

~ll 
Zi_1 j-l ~qp 

Zj q,j p

+ ~~~ ~~~Ol a~~~~ 1 
— 

~~~~~~~~ 

a~~ 1~~ 
- 

~~~ ~~~~~~~~

- 9  a.rs i—r ,j—s

The model, in general, gives a nonseparable autocorrelation

function. If the coefficients of the process satisfy the

condition

~rnn = 
~m0 ~0n

then the process becomes a multiplicative process in which the

influence of rows and columns on the autocorrelation is

separable. Thus

• 

. P u = Pio P0~ -

• Tou et a].. consider fitting a model to a given texture .

The choice among the autor egressive , moving average and mixed

models , as well as the choice of the order of the process , is

made by comparing the behavior of some observed statistical

properties , e . g . ,  the autocorrelation funct ion , wi th  tha t  pre- 
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dicted by each of the different models. For each of the possibly

many choices of models, the values of the parameters are deter-

mined so as to minimize , say, the least square error in f i t .

A comparison of the predictions of autocorrelation func-

tion, results of transformations of the series , etc., based

upon the model obtained above, with similar properties of the

available data can be used to establish its appropriateness ,

or to suggest desirable modifications in the model , e.g.,

changing the order, etc.

In a subsequent paper , Tou and Chang [611 use the maxi-

mum likelihood principle to optimize the values of the para-

meters, in order to obtain a refinement of the preliminary 4
model as suggested by the autocorrelation function.

A bilateral dependence in two dimensions is more complex

as compared to the one—dimensional case discussed earlier. —

Once again, this general formulation has a unilateral counter-

part; for example, making a point depend on the points in the

rows above it, as well as the points to its left on its own

row. However , Whittle [63] gives the following reasons in

• recommending working with the original two-dimensional model:

1) The dependence on a finite number of lattice neighbors,

for example a finite autoregression in two dimensions,

may not always have a unilateral representation that

is also a finite autoregression . 
- 

. 
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• 2) The real usefulness of the unilateral representation

is that it suggests a simplifying change of parameters.

For most two—dimensional models , however , the appro-

priate transformation , even if evident, is so compli-

cated that nothing is gained by performing it. It

may be pointed out that frequency domain analysis for

parameter estimation [13] may prove useful here too. 4

Two—dimensional Markov random fields have been investigated

for representing textures. A wide sense Markov field repre-

sentation aims at obtaining linear dependence of a pixel pro-

perty , say its gray level, on the gray levels of certain other

pixels so as to minimize , say, the mean square error between

the actual and the estimated values such that the error terms

of various pixels are uncorrelated random variables.  A

strict sense Markov f ield representation involves specif icat ion

of the probability distribution of the gray level given the

gray levels of certain other pixels. Although processes of

both these types have been investigated , more experimental

work has been done on the former .

Woods [651 shows that the strict sense Markov field differs

from a wide sense field only in that the error variables in the

former have a specific correlation structure, whereas the

errors in the latter are uncorrelated . He points out the

restriction on the nonwhite noise (error) process driving

:1& _
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the strict sense model that yields a recognizable field. The

• condition under which a general noncausal Markov independence

reduces to a causal one is also specified .

Abend et ai. [1] introduce Markov meshes to model depend-

ence of a pixel on a certain immediate neighborhood . The joint

probability density for the entire image , then , is the product

of local conditional probability densities at each pixel.

Using Markov chain methods on the sequences of pixels from

various causal dependency neighborhoods of a pixel they show

that in many cases such a causal dependence translates into a

noncausal dependence . For example , the dependence of a pixel

on its west, northwest and north neighbors translates into its

dependence upon all its eight neighbors. Interestingly , the

causal neighborhood that results in a 4-neighbor noncausal

dependence is not known in the formulation , although in the

Gauss Markov formulation of Woods [65] such an explicit

dependence is allowed . In this sense Woods ’ definition of a

Markov field is more general than the Markov meshes of Abend

et al. [1].

Hassner and Sklansky [21] also discuss a Markov random

field model for images. They present an algorithm that generates

a texture from an initial random configuration and a set of

independent parameters that specify a consistent collection of

nearest neighbor conditional probabilities which characterize

the Markov random field.

- - - 
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Degu chi and MO L-ishi ta [ 14] use a noncausal  model for I tic

dependence of a pixel on its neighborhoud centered at the })i x~’1 .

The weights are determined by minimizing the mean square esti-

mation error. The optimal two—dimensional estimator chara-~Lc r-

izes the texture . They use such a characterization for cl:~s.;i-

fication and for seqm€ntation of ima~es consisting of more

than one textural region .

Jam and Angel ~27] use 4—neighbor autoregression to mod’~ i

a given autocorrelation function , not necessarily separable.

They obtain values of the autoregression coefficients in terms

of the desired autocorrelation function , which does not have

to be separable. However , their representation involves error

terms that are uncorrelated with each other or with the non-

noisy pixel gray level values. As pointed out by Panda and

Kak [45], these two assumptions about the error terms are

incompatible for Markov random fields. [GS].

Jam and Angel [27] point out that ~ ‘1-neighbor Markov

dependence can represent a large number f physical processes

such as steady state diffusion, random walks , birth and death

processes, etc. They also propose 8-ne i ghbor [27] and 5-

neighbor (the 8 neighbors excluding the northeast, east,

and southeast neighbors) [27 , 28]  models. 
-

Wong [64] discusses the characterization of second order

random fields (having finite first anrt second moments) from the
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point of view of their possible use in representing images.

He considers various properties of a two-dimensional random

field, and their implications in terms of its second-order

properties. Some of the results he obtains are as follows :

(1) There is no continuous Gaussian random f ield of two

dimensions (or higher dimensions) which is both

homogeneous and Markov (degree 1)

( 2 )  If the covariance function is invar iant  under

translation as well as rotation , then it can on ly

depend upon the Euclidian distance. The second-

order properties of such fields (Wong calls them

homogeneous) are characterizable in rerr~s of a

single one—dimensional spectral distribution.

Wong generalizes his notion of homogeneity to include

random fields that are not homogeneous , but can be easily

transformed into homogeneous fields . Even this generalized

class of fields is no more complicated than a one—dimensional

stationary process.

Lu and Fu [34] identify the repetitive subpatterns in

some highly regular textures from Brodatz [11] and design a

local descriptor of the subpattern in an enumerative way by

generating each of the pixels in the window individually.

The subpattern description is done by specifying a grammar

whose productions generate a window in several steps. For

• - .-

- 

.:~ 
-:

~~~~~~~~~~~~~~~~~~~~
-

L — —
~~

-
~ 
- 

______ -______________________



example, starting from the top left corner rows may be generated

by a series of productions, while other productions will

generate individual pixels within the rows. The grammar used

may also be stochastic.
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• 3. Region Based Models

The next few models use the notion of a structural

primitive, although both the shapes of the primitives and

the rules to generate the textures from the primitives may

be specified statistically.

Matheron [36] and Serra [58] propose a model that views

a binary texture as produced by a set of translations of a

structural element. All locations of the structural elements

such that the entire element lies within the foreground of the

texture are identified . Note that there may be (narrow) regions

which cannot be covered by any placement of the structural

element, as all possible arrangements of the element that cover

a given region may not lie completely within the foreground .

Thus only an “eroded” version of the image can be spanned by

the structural element which is used as the representation of

the original image . Textural properties can be obtained by

appropriately parameterizing the structure element. it is in-

teresting to note that for a structural element consisting of

two pixels at distance d, the area of the eroded image is the

value of the autocovariance , at distance d , of the original

image. More complicated structural elements would provide a

generalized autocovarianCe function which has more structural

• information. Matheron and Serra show how the generalized co—

variance function can be used to obtain various texture features. 
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Zucker [671 conceives of a real texture as being a distortion

of an ideal texture which is a spatial layout of pr imitives as

cells in a regular or semiregular tessellation . Certain trans-

formations are applied to the primitives to distort them to pro—

• vide a realistic texture. The statistical nature of the texture ¶

can be provided through these transformation rules.

Yokoyama and Haralick [66] describe a growth process to

synthesize textures. Their method consists of the following

steps:

a) Mark some of the pixels in a clean image as seeds.

b) The seeds grow into curves called skeletons .

c) The skeletons thicken to become regions.

d) The pixels in the regions thus obtained are transformed

into gray levels in the desired range.

3 )  A probabilistic transfort~tation is applied , if desired ,

to modify the gray level cooccurrence probabil’ty in

the final image.

The distribution processes in (a)  and the growth processes

in (b) and (c) can be deterministic or random. Yokoyama and

Haralick’ s method , however, sums up to an ad rioc sequence of

growth operations to generate a random pattern , since the depen-

dence of the properties of the images generated on the nature of

the underlying operations is not obtained . This makes the

approach unsuitable for texture description or classification . 
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F. A class of models called mosaic models , based upon

random , planar pattern generation processes , have been con-

sidered by Ahuja [2,3,4,5], Ahuja and Rosenfeld [6] and

Schachter, Davis , and Rosenfeld [56]. Schachter and Ahuja

[55] describe a set of random processes that produce a variety

of interesting piecewise uniform random planar patterns having

regions of different shapes and with d i f f e r e n t  relative place-

ment. These patterns are analyzed for various geometrical and

topological properties of the components, and for the pixel

correlation properties in terms of the model parameters [3,4,

5,6]. Given an image and various feature values measured on

it , the relations obtained above are used to select the appro-

priate model.

• The syntactic model of Lu and Fu [34] discussed earlier

can also be interpreted as a region based model , if the

subpattern windows are viewed as the primitive regions.

We may point out that although the model used by Nahi and

Jahanshahi [431 and Nahi and Lopez— !kra [441 discussed earlier

is pixel based , the function y carries information about the

borders of various regions. Thus, under the constraint that

•
1 all regions except the background are convex , the model can

also be interpreted as a region based model.

L ~~~~~ _ _ _ _ _ _ _  _ _ _



4. Discussion

Region based models are inherently more powerful than

pixel based models. For the case of images on grids this is

easy to see. Consider a subpattern that consists of a single

pixel. The region shapes are thus trivially specified . It

is obvious that the region characteristics and their relative

placement rules c~n be designed so as to mimic the pixel and

joint pixel properties of a pixel based model, since both have

control over the same set of primitives and can incorporate

the same types of interactions . This shows that region based

models are at least as powerful as pixel based models . On

the other hand if we are dealing with images that are struc-

tured , i.e. that have planar clusters of pixels such that

pixels within a cluster are related in a different way than

pixels across clusters, then we must make such a provision in

the model definition . Such a facility is unavailable in pixel

based models, whereas the use of regions as primitives serves

exactly this purpose. It should also be pointed out that

region based models appear to be more appropriate for the

representation of natural textures, which do usually consist

of regions.

Many texture studies are basically technique oriented and

describe ad hoc texture feature detection and classification

schemes which are not based upon any underlying model of the

texture . We do not discuss these here ; see [19,41 ,59] and

the references therein.
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